Instance Compression for the Polynomial Hierarchy and beyond

نویسندگان

  • Chiranjit Chakraborty
  • Rahul Santhanam
چکیده

We define instance compressibility ([5, 7] ) for parametric problems in PH and PSPACE. We observe that the problem ΣiCIRCUITSAT of deciding satisfiability of a quantified Boolean circuit with i− 1 alternations of quantifiers starting with an existential quantifier is complete for parametric problems in the class Σ i with respect to W -reductions, and that analogously the problem QBCSAT (Quantified Boolean Circuit Satisfiability) is complete for parametric problems in PSPACE with respect to W -reductions. We show the following results about these problems: 1. If CIRCUITSAT is non-uniformly compressible within NP, thenΣiCIRCUITSAT is non-uniformly compressible within NP, for any i ≥ 1. 2. If QBCSAT is non-uniformly compressible (or even if satisfiability of quantified Boolean CNF formulae is non-uniformly compressible), then PSPACE ⊆ NP/poly and PH collapses to the third level. Next, we define Succinct Interactive Proof (Succinct IP) and by adapting the proof of IP = PSPACE ([4, 2]), we show that QBFORMULASAT (Quantified Boolean Formula Satisfiability) is in Succinct IP. On the contrary if QBFORMULASAT has Succinct PCPs ([12]), Polynomial Hierarchy (PH) collapses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abusing the Tutte Matrix: An Algebraic Instance Compression for the K-set-cycle Problem

We give an algebraic, determinant-based algorithm for the K-Cycle problem, i.e., the problem of finding a cycle through a set of specified elements. Our approach gives a simple FPT algorithm for the problem, matching the O∗(2|K|) running time of the algorithm of Björklund et al. (SODA, 2012). Furthermore, our approach is open for treatment by classical algebraic tools (e.g., Gaussian eliminatio...

متن کامل

Instance compression of parametric problems and related hierarchies

We define instance compressibility ([13, 17]) for parametric problems in the classes PH and PSPACE. We observe that the problem ΣiCIRCUITSAT of deciding satisfiability of a quantified Boolean circuit with i−1 alternations of quantifiers starting with an existential quantifier is complete for parametric problems in the class Σ i with respect to w-reductions, and that analogously the problem QBCS...

متن کامل

Incompressibility through Colors and IDs

In parameterized complexity each problem instance comes with a parameter k, and a parameterized problem is said to admit a polynomial kernel if there are polynomial time preprocessing rules that reduce the input instance to an instance with size polynomial in k. Many problems have been shown to admit polynomial kernels, but it is only recently that a framework for showing the non-existence of p...

متن کامل

I  C  Id

In parameterized complexity each problem instance comes with a parameter k and the parameterized problem is said to admit a polynomial kernel if there are polynomial time preprocessing rules that reduce the input instance down to an instance with size polynomial in k. Many problems have been shown to admit polynomial kernels, but it is only recently that a framework for showing the non-existenc...

متن کامل

Lower Bounds for Kernelizations

Among others, we show that every parameterized problem with a “linear OR” and with NP-hard underlying classical problem does not have a polynomial reduction to itself that assigns to every instance x with parameter k an instance y with |y| = k · |x|1−ε unless the polynomial hierarchy collapses to its third level (here ε is any given real number greater than zero).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2012